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ABSTRACT

This report concerns a procedure to characterize the
single highest response of a single degree-of-freedom
system to a burst of amplitude modulated random noise.
The response maxima results are obtainea by a digital
simulation study and displayed as normalized tamilies
of curves in probability. Such curves are identified as
probabilistic shock spectra; they have application in the
design of structural systems in nonstationary random

environments such as gusts, turbulence and earthquakes.
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1. INTRODUCTION

Some response characteristics of unimodal mechanical
systems to finite duration deterministic inputs may be categorized
by means of shock spectra. Shock spectra are plots which relate
response maxima of a single degree of freedom system to para-
meters of both the system and the excitation. Such plots often are
displayed as a family of curves whereby a normalized response is
plotted as a function of the time duration of the input and the natural
period of the system.

For a nonstationary random input such as an amplitude
modulated burst of random noise (a type of shock pulse), it frequently
is important in design to predict a response maximum. If we re -
strict our attention to a single degree of freedom mechanical system,
it is consistent to identify as probabilistic shock spectra those plots
which relate response maxima and exceedance probability with the
system and excitation parameters. This study considers probabilis-
tic shock spectra for amplitude modulated, broadband, Gaussian

white noise of finite duration.



2. PROBLAM DEFINITION
The equation of motion for the system of Figure 1 is given by

my + cy + ky = £(t) (1)

where m is the mass, c the viscous damping coefficient, k the

linear spring constant and y the displacement from the static

equilibrium position. Since

2 k
w ==
n m
c
== 2
2w == (2)
c
L=7 ,
c
the system equation of motion may be written as
V2o v+ely =+ gt (3)
ytéte yte y=_—

Let us assume the system is initially at rest.
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Figure 1. Single Degree of Freedom Mechanical System

The input force excitation is given by

f(t) = e(t) n(t) , 0<t<t (4)

0

where e{t) is a well-defined envelope function of time duration to
and n(t) is stationary, Gaussian, broadband white noise with zero
mean. This product defines a sample function of the process f(t) as
a burst of amplitude modulated white noise. Our problem is to pre-

dict the maximum response of the system to the nonstationary ex-

citation f(t).



3. GENERAL REMARKS

The problem of ~oncern here is associated in the literature with
random process problems dealing with barrier and threshold level
crossings, first exceedances, and single highest peak (SHP) excursions.
In theory, solutions can be determined when y(t) is a Markov process.
In practice, solutions become tractable when y(t) is a one-dimensional
Markov process functionally dependent upon a single random variable.

Our mechanical system is defined by a second-order differential
equation in time with constant coefficients. The »esponse y(t) to f(t)
ma’, be expressed in terms of a two-dimensional Markov process. Prac-
tically, however, in order to determine level crossing solutions, we
seek methods which convert the response process to a Markov process
of one dimension. Such methods generaliy provide approximate solu-
tions since the conversion usually is not exact.

Rosenblueth and Bustamente [21] accomplished this conversion by
using a variable substitution, and obtained bounding solutions by sciving
a boundary-value problem. Caughey and Gray [6] in addition to Mark
[17] calculated similar results using Fokker-Planck equations. Gray
[12] defined a sariable substitution, used approximations for the transi-
tion probability, and sabsequently made the conversion to a one-dimen-
sional process. He then calculated bounding solutions as well as the
mean and mean square for times to a first exceedance. Cra.lall, Than-
diramani and Cook [9] obtained threshold value solutions by solving
numerically the Smoluchowski integral equation.

Still other techniques applicable to random process les ‘rossings
are available. Shinozuka and Yao [22] developed bounds apg. sle to
any first-passage problem. A renewal process approach was used by

Rice and Beer [18]. A series solution approach was considered by Rice



(19], improved upon by Longet-Higgins [15], and developed further by
Roberts [20]. The partial sums of the series comprise upper and lower
bounds to the first passage density function. Both single and two-sided
threshold levels were formulrted. Other works that should be examined
are those ty Srinivasan, Subramanian, and Kumaraswamy (23] and Lin
[14].

Yet another approach, very simple in concept and sufficiently accu-
rate for engineering applications, is that of direct simulation. Crandall,
Chandiramani and Cook [ 9] have considered a digital simulation, as has
Barnoski [1], though to a more limited extent. Barnoski (3] also has
obtained solutions by analog simulation methods. Principally due to the
data processing convenience of a digital computer, a digital simulation

is used in this study.



4. RESJLTS FOR AN INPUT OF STATIONARY
WHITE NOISE

Although our problem concerns a particular form oi nonstationary
excitation, it is worthwhile to examine first exceedance results and other
properties of the response process when f(t) is bandlimited stationary
white noise and the system response y(t) is stationary with zero mean.
Accordingly, we wish to predict the single highest stationary (SHS) re-

sponse the systemn will experience within the sampling time interval T.

4.1 RESPONSE PROPERTIES

Before we consider the prediction of this SHS response, let us
first recall some pertinent properties associated with the system re-
snonse y(t). When the damping is small and the bandwidth of the input
excitation is wide compared with the half-power bandwidth of the system,
the response appears as Figure 2. This is called narrowband noise.
Since the zero crossings are very nearly equally spaced, such motion
sometimes is described as a harmonic motion of frequency fn with
randomly varying amplitude and phase.

TLe mean square stationary response is given by

2 C
. =/ G (w) dw (5)
y y

where Gy(u) is the response spectral density and w is the upper

cutoff frequency of the input excitation.
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Figure 2. Stationary Response of a Lightly Damped Mechanical
Oscillator to Broadband White Noise

Now

2
G_(w) = |H(w)|" Gyw) (6)
y

where H(w) is the system frequency response function

H(w) = : (7)



and Gf(w) is the spectral density of the input excitation. For band-

limited white noise, Gf(w) is the constant G By substituting

0"
Eq. (6) into (5) and carrying out the integration,

2 “e 2 vQGO
¢ = Gof lH(w)' dwz—T—i In (8)
y 4] 2m @
n
where
1
Q= T3 (9)
With R=w /w , the dimensionless term I is
¢ n n
2 2 1/2
I=ltan°1—2§-§—+ L 1n| LR + 2R(1 - &)
n w ) -RZ 2 1/2 2 2 1/2
2nw(l - L) 1+R -2R(1 -C)
(10)

and ranges in value between zero and one as shown in Figure 3.
These curves point out that H(w), for small damping values, actsasa
highly selective bandpass filter and admits frequency components
approximately equal to and centered about fn. For broadband ncise,

w /w >> 1 so that
C n

2 TTQGO
“y T Z .3 (n

2m W

n
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For a statioaary process, the expected number of crossings per

unit time at the level y = a with positive slope is given by [10]

+ ©
nt o f $p(a §) 4y (12)
a 0

Since the joint density function p(a,y) for a Gaussian process with

Zero mean is

-
1 1][ a)? v 2
V) = — -=H=1 +
pla,y 2r 0 o PIT2 (0' ) 0'.) ’ (13)
Yy Y Yy
then
+ + 1 .2
n_ =n, exp[— > [30] (14)

+ . . -
where n, is the expected number of zero crossings per second with

positive slope and po is the ratio

a
By = = (15)

y

+ .
Now n, is expressed by
62 1/2
Pl Y

Mo Tzn| 2 (16)

v



where the mean square velocity response o, is
y

w
2 € 2 2
et =G [ w |H(w)‘ dw (17)
y 0J,
Upon integration,
QG
i ik M 18)
y 2m w
n
where
f 2 2 1/2
- R -
H:ltanlzg i 4 h1+R+2R(1 L)
n w \ —RZ 21/2 2 Zl/Z
} 2w(l - L") 1 +R” - 2R(1 -¢)

(19)

with a = wc/w The term IIn ranges in value between zero and one
n

as shown in Figure 4. For broadband noise, IIn =1 and

2
Te = —-2—0'— (20)
y 2Zm w
n
so that
‘ + o~
n, fn (21)

11
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Analogous in form to Eq. (16), the expected number of response

maxima per unit time is given by [8]

5 1/2
N max) =27 | 2 (22)
o'.
Yy
where
wC
2
e ] w4|H(w)| dw (23)
y 0J,
Upon integration,
QG w
2 m
oo = —%‘- I (24)
y Zm n
where
III = ﬁB+ 2(1 - 2;2) II -1 (25)
n m n n

Plots of IIIn are shown as Figure 5. For increasing values of wC/w
IIIn increases in value to magnitudes much greater than one and
becomes unbounded as wclwn - . Discussions concerning this behavior

are given by Crandall [8] and Lyon [16].

13
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Since the input is Gaussian and the system is linear, the
probability density function for the process y(t) likewise is Gaussian.
The density function for the envelope of the response is Rayleigh. The
density function for the response maxima (that is, the number of

individual peaks) is given by [8, 19]

1/2 g
_ 2 0
P =[1 -] T
[1-r7
(26)
, 1/2 o
+[2mr7] ﬁof(ﬂo) F| F— 51172
1l -r
2
r
where
+
I
" Ny ) (27)
max
The functions f( ) and F( ) are the tabulated normal functions
1 1 2
f(x) = — exp[: —xJ
[2n] 1/2 ) 2
(28)

X
F(x) = f f(n) dn
-0

15



For a narrowband process, r 1 and p(po) reduces to the Rayleigh

density function

2
p(B,) = B exp[%poj ., a>0 (29)

This is noted to be the same as the density function for the envelope
of the response process. As r— 0, p(ﬁo) reduces to the Gaussian

density function
1 1.2
N S .= -0 <ac< o 30

which is that of the process y(t).

4.2 SINGLE HIGHEST STATIONARY RESPONSE

To predict the SHS response we seek an expression for the proba-
bility that the maximum value of |B| is less than or equal to the level BO
within the time interval T. Such is noted symbolically by PT(lB'f Bo).

Let us restrict our attention to relatively high barrier levels, say
Boz 2.5; we assume each exceedance at the level y/t) = a is a statis-
tically independent event and that the elapsed time to the first exceedance

t, is a random variable with the Poisson” probability density.

t Although the Poisson assumption is imprecise, it simplifies enormously
the mathematics associated with the problem as well as provides con-
servative bounds [10].

16



- t - + 2
p('c&)-na exp[nate] , teZO (21)

Now the probability of y(t) exceeding the level a within the interval

0-t < Tis
~ e —

T
(B> B) = fo p(t,) dit ) (32)

which, for the Poisson density and small probability values, reduces

to

~ t
P .(p>By)=n T (33)

For the two-sided barrier, PT(IBI > [30) ~2 PT(,B > 130) so that
~ +
pT(lp! >p)¥2n T (34)

Upon substitution of Eq. (13),

~ 1.2
PT(||3| > ﬁo) = anT exp[zﬁ()] (35)

17



and

P (1Bl < By) <1 - P(Bl > B) (36)

Alternatively, by means of either '"equivalent' RC series circuits
and Fokker-Planck solutions [17] or by a diffusion of joint probability

in the phase plane [9],

A
P(B <B)TA, exp(— a wnTQ], T>r (37)

where the "hat' over the P implies an estimate of P_{§ < [30). The term
TV =

AO defines a constant dependent upon the initial conditions, ao is a

parameter dependent upon both Q and the threshoid level ﬁo . and
Teorr is the time lapse for the autocorrelation function to decay to

a negligible value. Foi threshold levels where ﬁo >2.5, T> Teorr

can be ignored as a restriction and A_ can be assumed equal to unity.

0

Plots of @, versus Q are shown in Figure 6 as families of curves in

B, for both p =B and B = [8].

Still another approach is by an active analog simulation[3 ].
The mechanical system is modeled by a network of operational ampli-
fiers with the input supplied by a noise generator. The single highest
system response from many trials are collected, processed, then used
to establish estimates for l’;T(lﬂ < ﬁo) . Such empirical solutions
are shown in Figures 7 and 8 as families of curves in Q for ﬁo versus

A
fnT/Q. Solutions are displayed in Figure 7 for PT(|B| < ﬁo) = 0.50

18
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(this percentile happens to correspond to the average peak value) and
in Figure 8 for pT({ﬂ; < Bg) =0.95.

Now Eqs. (36) and (37) and Figures 7 and 8 all constitute solu-
tions to the SHS problem for Gaussian, stationary, narrowband noise.
The analog results can be compared more conveniently with the ana-

lytical expressions by rewriting Eqs. (36) and (37) in the form

=
i

26 T = P_(|P| < B exp| s B
n TUPL < By) expi = B

(38)

A

a, = -5=
0 FA S QZ [fnT]

Such a comparison shows close agreement between the analog data
and Eq. (37). The analog data also support Eq. (36), but show close
agreement only for the larger values of fnT. Let us consider the
practical ramifications of this behavior.

Equation (36) is a bounding solution, and it departs somewhat
from the other solutions for a lesser number of response cycles, say
fn T < 1000. Since the SHS response ‘s influenced by Q for the
smaller values of fnT, this departure logically could be predicted
since Eq. (36) is independent of Q. Now for the lar, - values of
fnT, say 10, 000, Eq. (36) yields results approximately the same as
the values obtained from the other solutions. This behavior suggests
the SHS response becomes independent of Q for a large number of

response cycles.

22



In summary, these solutions markedly point out the dependency
of the single highest stationary response upon both the sampling time
and an acceptable value of probability. For example, Figure 8 shows
that By = 3 (i.e., a peak value which is three times the stationary

A
rms response) corresponds to PT(“S] < ﬁo) of approximately 0. 95 at

£ T/Q¥ 0.2 and to 'f’T(IﬁI < B,) of approximately 0. 50 at £ T/Q g 0.
Expressed in another way, such statements point out there is a 5%
probability that a peak value will exceed 3<ry for T=0.2 Q/fn and a 50%
probability that a peak value will exceed 3¢ for T 5Q/f . It is

clear from these results that the design of structure and o:l equipment
based upon a single exceedance criteria in a random environment en-
tails knowledge of the system, statistical assumptions of the environ-
ment, an estimate of the time durati~n in the environment, and an
acceptable probability level of design. The extension of such results

to include multi-degree of freedom structures, although examined

sartially [2], remains as a future task.

23



5. NOISE BURST STUDY

5.1 PRELIMINARY CONSIDERATIONS

Unfortunately, many random environments cannot be character-
ized as an input excitation of stationary, Gaussian white noise. Environ-
ments such as those for gusts, turbulence, and earthquakes can be

represented more realistically by

f(t) = ety n(t), 0 <t < to
where, as mentioned previously, e(t) is a well defined envelope or
modulation function and n(t) is bandlimited, éaus sian white noise.

This excitation is a sample function from a nonstationary random
process and can be formed by shaping the output of a random noise
generator with a time limited envelope function. A typical input for
broadband white noise modulated by a rectangular step and the sub-
sequent system response are shown in Figure 9. With the system
initially at rest, our task is to predict the maximum value of the
response y(t). This solution is noted by PtO (‘p‘ < (30).

Consider the five envelope functions shown in Figure 10. They
are classified as rectangular, half-sine and sawtooth. The notation
AT refers to the time duration of a rectangular noise burst and
LRMP denotes an initial peak sawtooth, RRMP a terminal peak saw-
tooth, and SYMRMP a symmetrical sawtooth. Let us elect to formu

late solutions for the single highest response by means of a digital

24
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Modulation Function K
Rectangular —_— — 1.00
— a1, —|
Half- Sine __/\_ 2.00
l.__ATZ—-l
LRMP
_J\_ 3.00
l"—AT3'—'|
RRMP
Sawtooth —/l-— 3.00
I-—AT/.;__I
SYMRMP
_A_ 3.00
f—at,—]

Figure 10. Modulation Functions for the Input Noise
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simulation and to represent the results by slots similar to Figures 7
and 8. We call such single highest response solutions probabilist ¢
shock spectra in as much as they represent (estimates of) the maximum
response of a single degree of freedom system to bursts of random

excitation.

To adhere to the format of Figures 7 and 8, two questions must
be answered:
e What time duration should be used in lieu of the
sampling time interval T?

e What rms response should be used in order to
form the ratio |B| ?

An answer to the first question is provided by replacing T with a
measure of the time duration of the input burst. Let A’I‘1 be the
time duration of a rectangular noise burst, On the assumption of
equal energy inputs (governed by the envelope functions), other

envelope functions can be equated to this time base according to

t =KAT (39)

where

K= — (40)

For a rectangular envelope, K =1 so that t, = A'I'1 . Values of K for

0
the other envelope functions are included in Figure 10.

27



An answer to the second question is provided by first examining
the factors which influence the system mean square response when
e(t) is a rectangular step and n(t) is correlated according to the
function

_ -ajTl
Rn('r) = R0 e cos pT (41)

This correlation function is suitable for the output of white noise
generators .sed in the laboratory. The quantity o defines a corre-
lation decay constant and p a harmonic irequency. The system mean

square response may be expressed by [4]

R
2 0
Ely’ ()] =—|R,T, - X|T, +R, T, - X;T, (42)
m
where
a -2bt b .
Tl—Zb 1 -e 1+as1n2at
-2bt . 2
T2 = -e sin at (43)
2 2 2 2
T, =1 +e-2bt 1 +EsinZat+b ~a tp -a sin at
3 a 2
a
-2 e-(a+b)t cos at cos pt + bia sin at cos ot + ‘5 sin at sin pt
- 2 -
T4= 2 e 2bt -L:-sin atl t e (atb)t ssin at cos pt
a

o . .
- cos at sin pt - sin at sin pt

28



The remaining terms are written as

. £
R, = e C .2 Sz)(sz z) 2
1 \ 1773 1~ "4
L.
R, = Re 1 _I
3 (Sz Sz) (sz Sz) |
3771 3772 _l
(44)
(pz+az+sz)
_ \ 1 a
Xy =1Im 22 z 2 2
*11%1 7 %3 /1% 7 %4 2
L
X, =1 l . TRy
3= m 2 2 2 2
®3 7 %1 s3'*2)
and the complex numbers as
sl=a+1b s3=p+1cv
(45)
szz—“é-ib s4--p+iar

29



with the system properties

) [1 .2]1/2
a—Un -y

b=§mn

(46)

From the plots in [ 4], it is noted that the mean square response
may exceed its stationary value for various combinations of a, p, T,
w and Q. Such is not convenient for the |p| normalization.

For a white noise input, the mean square response is determined

from Eq. (42) by

2
lim E[y (t)] (47)
a >
A +
which reduces to
TG 2
E[yz(t) = -—20- 1 - e-th 14 b sin 2at + sin2 at (48)
4lm w a a

* This expression agrees identical'y with that of Caughey and Stumpf
[7] . A reievant discussion is by Janssen and Lambert [13].

‘)
~
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Figure 11 depicts the behavior of this equation. A family of
normalized curves in Q is shown where fnt is interpreted as the
number of response cycles. For damped systems, the mean square
response is seen to approach asymptotically (but does not exceed)

the limiting value

G
. 2 2__ "
lim E[y (t)] = cry = > 3

t—+o0 4¢m w
n

which is the stationary mean square response of the system to an input
2 -
of broadband white noise. Since the 0", values are not exceeded, their

use as normalization constants for |Bl is suitable. In addition, the
plots of Figure 11 may be used to assess the time lapse (or number
of response cycles) for unimodal mechanical systems to attain near

stationarity in their response.

5.2 COMPUTER SIMULATION

The block diagram for the digital simulation on the 1108 Univac
computer is shown as Figure 12. Digital filtering techriques [11]
were used to represent the mechanical system. The random noise
generator consisted of a computer subroutine which produced Gaussian
white noise with zero mean and unit variance. The envelope functions
were those of Figure 10 where

sawtooth: AT3 = AT4 = AT5 = 3A’1’1 = tO

(49)

half-sine: ATZ = ZAT1 0

L]
(ad

32
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By discretizing the time variable in the form

t,. = NOt (50)

the input excitation to the single tuned digital filter for each envelope

function is

f(\At) o e(AAt) n(AAL) (51)

The filter output is defined by

y(AAt) = CE(AAL) + h1 f([x - 1] At) + hZ f([\ - 2] ot) (52)
where
2 1/2
h1 =2 expl -gwnAt] cos(mn[l -t} At)
h, = -exp[-2Lw_at] (53)
w =27unf , f =100 Hz
n n n

For each combination of fn tO/Q » three hundred runs were made.
For each run, the data were sampled and the positive and negative response

maxima (+ peaks) were noted. After each set of three hundred runs,

34



the data were normalized by the white noise stationary rms response
of the system and arranged sequentially according to order of magni-

tude. The sample mean and variance were calculated by

N
+ 1 +
Ymax = N Z Yy max
k=1
Dma— 1 N
Ymax = I_\I Z ykmax
k=1
(54)
N 2
2 1 + +
S+_N—1 kz_l ymax-ymax
N _ 12
2 1 - -
S-_N-lg_:"1 Ymax ~ Ymax

where the sample size N = 300. The largest values for both Y:nax
and y;nax also were listed. Finally, the sample probability density

functions P (y.__ ) and P (y_ ' i
unctions p{y ) and p ymax) were determined and percentile

estimates made by

35
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where the probability P varies over the range 0 < P < 1.
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6. NOISE BURST RESULTS

The results of the digital simulation study are shown as Figures
13 through 18. All are plots of gto(‘ﬁl < [30) for either Q =5 or Q =50
where the exceedance level BO is plotted versus the parameter fntO/Q.
Data are shown for the five modulation functions and the stationary re-
sponse of the system to white noise is included for purposes of com-
parison.

Figures 13 and 14 are plots of the average response maxima for
Q=5 and Q =50, respectively. The dashed curves define the variance
extremes of the output data. That is, the upper curve is the variance
of y(t) for the rectangular step modulation while the lower curve is the
variance of y(t) for the terminal sawtooth modulation. The response
to the stationary input is the response maxima corresponding to the
fiftieth percentile, i.e., /I;Tqﬁ's [30) = 0.50.

Figures 15 and 16 are plots of the fiftieth percentile response
maxima for Q =5 and Q = 50. Figures 17 and 18 are plots of the
ninety-fifth percentile response maxima for Q = 5 and Q = 50. As
expected, due to the white noise normalization 0'y , the nonstationary
response values do not exceed the stationary response values. More-

over, they generally follow the trend of the stationary results. This

suggests the stationary response maxima may be used as conservative
bounds for response maxima due to the modulated noise inputs. The
degree of conservatism varies with the shape of the modulation func-
tion; the greatest deviations are those for the sawtooth functions.

The least deviation is for the rectangular step modulation.

37



9SION 231ypM poieInpoiN 2pnitidwy jo jsang
e 0} wa}sAg wopasarJ-jo-aaafag 218ulg ® Jo rwWIXe]N asuodsay afeaeay ‘¢l 2andtyg

(@)
- u
Ou J
S 14 £ Z 1 0
HREERE o
dwiey 1edtrjswwis ¢
— dwey 33971 o
dwey 1481y ,/
2UlS J1eH e 7
7/
| - dojg aemBuejooy g4 ” 1
\v
7
uo13oUN ] UOIJBRINPON _|- ° \
- - ~
-— | -] -T = - % \
-— A— = + \ 7
4 Z
'/
e/ % . \\\ / 0y
L A \
asuodsay Aaeuoljels —] Z 7
o] — o
] I\l\. | L -~
— -
— -
e =1 " = 3
- aum| o o -+ -1
Y
G = 0 ‘euwixep asuodsay a8eisay
N I O ’

38



e 0] wi23sAg wopaaaJ-jo-2ao0a3a a18ulg ® Jo ewiXe asuodsay a8ersay ‘pi sandig

-

9STON 231ym Po3e[npoN 2pmirdwy jo 3sang

O
- u
Ou 3
S 14 (4 1
dwiey rectajowuwaig V
duiey 31397 =
duiey sy &
2ulg JiRH ®
doajg aemBueldayy
/
uotjoun g UOIIBRINPON _ 4
|~
- -
_4- — “
-1 | |
IIIl'I.III-lllII' - T
>
v y /
° /
]
asuodsay Aaeuorjeig * /
\ - \\L
- -
— 1‘\ -
— | — = I~ i \T
0S5 = O {ewixeN osuodsay aderaay

39



2STON 211YM Pole[npol 2pmiduy
Jjo 1sing e 03 wajsAg wopaal J-jo-aaa8aqg 218uig ' Jo rwIXRN 9suodsay ‘g 2Indtg

[T T T T ’
dwey resctrjowwuis V
dwey o1 W
dwey jysry &
autg yieH ©
doilg aien8ueidosy @ .
uo13ouUnN  UoileINPOIN w.d \
| ¥
t A
1 3 A1,
) Ry 4 L _— 0
av =
asuodsay Aieuoizelg ‘H -
el
-1 ¢
Y
0, — 4103
s=0 ¢ os0=(9d>|dha
v
14
O Y O A

40



2STON 2 1[YyMm paiernpop apnyridwuy
jo 3sang e 03 WI;SAg WOPIa1 J-Jo-99183( 913ulg © Jo rwIXRN asuodsey

‘g( @2andt g

IREER

_ 1

l

dwiey 1edtaijowiwaig
dwiey 1527
dwey 1481y

2UIS JI®H
dajg zenduejdey

“mey 44

uo13doun j uoljB[NPOW

[ -1

asuodsayy Areuoneig

- ol R

T

06 =0

L3
.

06°0 =

0
Og > 19h a
v

| 1

|

_

|

41



2810N 23Typm pale[npow apmirduy
;0 3sang e 0} wajsAg wopasax J-jo-2218ag a1fulg e jo ewixey osuodsay .1 2an3rg

o (@]
ou c.w
14 £ Z 1 0
I 0
RN
T!
| dwey [edtrjowwiAg ¢
i dwey 197 9
- dwey Y81y e
dulg j1eH ©
[~ dajs 1einduejosy @ 1
[ uo132UN{ UOIIB[NPON
_ ; B}
- | | |
- —— — + .I.f SRS ,.llm.L
i | :
R -t L_ ; 2 0
¢ d
. r.#-if:..L,i.fii L L
o o
AR Lol 194
asuodsay %.:Eoﬁﬁmlg a , % s
., | - #
W
w __ €
| |
B __
B '
: m
i s=0 ¢ se0=0d5|dh a
i v 14
Lo P T A T T S

42



-

9SI0N 231Ypm paienpop apnitduy
JO }sang € 0} wajsAg \uopaar J-jo-aaa8ag a(8uig B jo ewxe asuodsay gl aandig

- (@)
o u
LI
S 14 r4 1
TTT T ’
dwiey feorajawiwis ¢
[ dwey 3397 9 |~
— dwey 41y &
- oulg JTeH o
dejg zenBueioay g {
uoduUNg UOTIBTNPOW
RIS
4
04
0
- 3
0s = s6v0=95 19 ‘g
v
q
T |
- — : Y
asuodsay Aaruolieis H
aap—— -
14
1

43



Some error is introduced into our results due to discretiz-
ing both the system equation of motion and the input forcing function.
This usually can be made negligibly small; it is estimated to be
less than two-percent in this study. One discretization error
that needs further discussion is the bias error in locating the
true peak value of y(t). Another error that needs comment is the

statistical error associated with random data fluctuations.

For narrowband noise, let us assume the error in detecting a
peak value of y(t) is of the same order of magnitude as that of locat-
ing the peak value of a simple harmonic signal which has been digitally
sampled. By assuming a uniformly distributed phase angle, the bias

error Er [Y ] - hen Y = A cos wolt +t') is given by*

peal

sin (mo At/ 2)

Er[Ypeak] = A (wo At/2) (56)

where At is the time increment between two adjacent points of the
discretized signal. Figure 19 shows the effect of Eq. (56). Now with
At = 0. 0005 sec and f. = 100 Hz, Er[Y ] is less than one percent.
0 peak
Tolerance and/or confidence limits may be used to assess the

statistical variability of the data. Such limits, however, are ex-
tremely difficult to formulate since the true distributions of

+ -
y and y are not availauvle. Although nonparametric as

max max
well as parametric statistical methods [5 ] can be used, the resultant

limits generally are much too wide for practical application. Perhaps the

“Personal communication with R. K. Otnes (see Reference 11).
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simplest approach is to incrzase substantially the number of data points,
then use x2 goodness-of-fit tests. Since we are interested primarily in
the scatter of extremal data where Pto(lﬁlf Bo) > 90%, an all-digital
approach (as used here) generally will prove expensive as a large amount
of computcr time is required to produce such extremals. A seemingly
attractive procedure for acquiring and processing extremal data is by
means of a hybrid computer. The analog computer can be used to sim-
ulate the physical system and produce the extremal response values
(since running time comparatively is inexpensive); the digital computer

then used to perform the data analysis.



7. CONCLUDING REMARKS

Probabilistic shock spectra are presented for five noise mod-
ulation functions. Such spectra are normalized plots which charac-
terize the single highest response of a single degree-of-freedom
mechanical system to a burst of amplitude modulated random noise.
They are functions of exceedance probability, the system natural
frequency and damping, the time duration of the burst, and the de-

gree of correlation of the input noise.

Probabilistic shock spectra have application in the design of
unimodal mechanical systems in nonstationary environments where
a single exceedance level (say, a peak stress or maximum deflec-
tion) may be used as a design criterion. Their application to dis-
tributed structural systems appears limited to conditions whereby
the system response may be assumed to consist of a summation

of independent contributions from each of the normal modes.

Several investigations seem warranted at this point. One is
to investigate more fully the condition for which the nonstationary
mean square response exceeds its stationary or steady state value.
A second is to examine the effect of independent single degree-of-
freedom systems with closely spaced natural frequencies on the
response maxima statistics. A third is to study the effect of
typical spatial correlation functions un the time varying mean

square response of a distributed system.
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